We examine the potential of ChatGPT, and other large language models, in predicting stock market returns using sentiment analysis of news headlines. We use ChatGPT to indicate whether a given headline is good, bad, or irrelevant news for firms' stock prices. We then compute a numerical score and document a positive correlation between these ``ChatGPT scores'' and subsequent daily stock market returns. Further, ChatGPT outperforms traditional sentiment analysis methods. We find that more basic models such as GPT-1, GPT-2, and BERT cannot accurately forecast returns, indicating return predictability is an emerging capacity of complex models. Our results suggest that incorporating advanced language models into the investment decision-making process can yield more accurate predictions and enhance the performance of quantitative trading strategies.
翻译:我们研究了使用新闻标题的情感分析来预测股票市场回报的潜力,特别是ChatGPT和其他大型语言模型的应用。我们使用ChatGPT来判断一条新闻标题是好消息、坏消息还是与公司股价无关的消息。然后,我们计算一个数值分数,并记录这些“ChatGPT分数”与随后每日股市回报之间的正相关关系。此外,ChatGPT的表现优于传统的情感分析方法。我们发现,更基本的模型(如GPT-1、GPT-2和BERT)不能准确地预测回报,表明回报可预测性是复杂模型正在发展的能力。我们的结果表明,将高级语言模型纳入投资决策过程中可以产生更准确的预测,并提高量化交易策略的性能。