We compare the capabilities of two approaches to approximating graph isomorphism using linear algebraic methods: the \emph{invertible map tests} (introduced by Dawar and Holm) and proof systems with algebraic rules, namely \emph{polynomial calculus}, \emph{monomial calculus} and \emph{Nullstellensatz calculus}. In the case of fields of characteristic zero, these variants are all essentially equivalent to the the Weisfeiler-Leman algorithms. In positive characteristic we show that the invertible map method can simulate the monomial calculus and identify a potential way to extend this to the monomial calculus.
翻译:我们用线性代数法将两种接近图形异形法的方法的能力进行比较: \emph{可视地图测试}(Dawar和Holm所介绍的)和校对系统与代数规则,即:\emph{polynomyal calculus},\emph{monomical callulus}和\emph{Nullstellensatz callculus}。在特性零的方面,这些变量基本上都等同于Weisfeiler-Leman算法。在积极特征中,我们表明不可逆的地图方法可以模拟单体积,并找出将这一方法扩大到单体积的可能性。