While recent works have indicated that federated learning (FL) may be vulnerable to poisoning attacks by compromised clients, their real impact on production FL systems is not fully understood. In this work, we aim to develop a comprehensive systemization for poisoning attacks on FL by enumerating all possible threat models, variations of poisoning, and adversary capabilities. We specifically put our focus on untargeted poisoning attacks, as we argue that they are significantly relevant to production FL deployments. We present a critical analysis of untargeted poisoning attacks under practical, production FL environments by carefully characterizing the set of realistic threat models and adversarial capabilities. Our findings are rather surprising: contrary to the established belief, we show that FL is highly robust in practice even when using simple, low-cost defenses. We go even further and propose novel, state-of-the-art data and model poisoning attacks, and show via an extensive set of experiments across three benchmark datasets how (in)effective poisoning attacks are in the presence of simple defense mechanisms. We aim to correct previous misconceptions and offer concrete guidelines to conduct more accurate (and more realistic) research on this topic.


翻译:虽然最近的著作表明,联合学习(FL)可能易受受损客户的中毒袭击,但其对生产FL系统的实际影响却无法完全理解。在这项工作中,我们的目标是通过列举所有可能的威胁模型、中毒的变化和对手能力,开发一个综合系统,用于对FL进行中毒袭击。我们特别侧重于非有针对性的中毒袭击,因为我们认为这些袭击与FL的生产部署密切相关。我们通过仔细描述一套现实的威胁模型和对抗性能力,对实际的、生产FL环境的非有针对性的中毒袭击进行了批判性分析。我们的结论相当令人吃惊:与既定的信念相反,我们表明FL即使在使用简单、低成本的防御手段时,实际中也非常活跃。我们甚至进一步提出新的、最新数据和典型的中毒袭击,并通过一系列广泛的实验,表明在三个基准数据集中如何存在简单的防御机制,有效中毒袭击。我们的目标是纠正先前的误解,并提供具体的指导方针,以便对此主题进行更准确(和更加现实)的研究。

0
下载
关闭预览

相关内容

专知会员服务
33+阅读 · 2020年12月28日
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
1+阅读 · 2022年2月16日
VIP会员
相关VIP内容
专知会员服务
33+阅读 · 2020年12月28日
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员