Regulations introduced by General Data Protection Regulation (GDPR) in the EU or California Consumer Privacy Act (CCPA) in the US have included provisions on the \textit{right to be forgotten} that mandates industry applications to remove data related to an individual from their systems. In several real world industry applications that use Machine Learning to build models on user data, such mandates require significant effort both in terms of data cleansing as well as model retraining while ensuring the models do not deteriorate in prediction quality due to removal of data. As a result, continuous removal of data and model retraining steps do not scale if these applications receive such requests at a very high frequency. Recently, a few researchers proposed the idea of \textit{Machine Unlearning} to tackle this challenge. Despite the significant importance of this task, the area of Machine Unlearning is under-explored in Natural Language Processing (NLP) tasks. In this paper, we explore the Unlearning framework on various GLUE tasks \cite{Wang:18}, such as, QQP, SST and MNLI. We propose computationally efficient approaches (SISA-FC and SISA-A) to perform \textit{guaranteed} Unlearning that provides significant reduction in terms of both memory (90-95\%), time (100x) and space consumption (99\%) in comparison to the baselines while keeping model performance constant.
翻译:美国《欧盟或加利福尼亚消费者隐私法(CCPA)一般数据保护条例(GDPR)》引入的一般数据保护条例(GDPR)在美国的《欧盟或加利福尼亚消费者隐私法(CCPA)》中包含了关于以下规定的条款:要求工业界应用将个人的数据从其系统中删除。在使用机器学习建立用户数据模型的几个真实世界行业应用中,这种任务要求无论在数据清理方面还是在模型再培训方面都需要做出重大努力,同时确保模型不会因数据删除而使预测质量恶化。因此,如果这些应用以非常高的频率收到此类请求,数据的持续删除和示范再培训步骤不会规模化。最近,一些研究人员提出了将相关个人的数据从系统中删除的行业应用理念。尽管这项任务非常重要,但机械学习领域在自然语言处理(NLP)任务方面都没有得到充分利用。 在本文中,我们探讨了关于各种GLUE任务模式{Wite:18}(例如QOP、SST和MNLI。)等应用在计算上效率的方法(ISA-FC和SISA-90x)中提供大量减少空间的基线和不断学习(SISA-99xx),同时提供大量减少空间的成绩。