J.-P. Roudneff conjectured in 1991 that every arrangement of $n \ge 2d+1\ge 5$ pseudohyperplanes in the real projective space $\mathbb{P}^d$ has at most $\sum_{i=0}^{d-2} \binom{n-1}{i}$ complete cells (i.e., cells bounded by each hyperplane). The conjecture is true for $d=2,3$ and for arrangements arising from Lawrence oriented matroids. The main result of this manuscript is to show the validity of Roudneff's conjecture for $d=4$. Moreover, based on computational data we conjecture that the maximum number of complete cells is only obtained by cyclic arrangements.


翻译:J.-P. Roudneff 在 1991 年提出了猜想:在实射影空间 $\mathbb{P}^d$ 中,$n\ge 2d+1\ge 5$ 个次超平面的任意排列最多包含 $\sum_{i=0}^{d-2} \binom{n-1}{i}$ 个完全胞腔(即由每个超平面所限定的胞腔)。对于 $d=2,3$ 和 Lawrence 定向拟阵的排列,该猜想是正确的。本文的主要结果是证明了当 $d=4$ 时,Roudneff 猜想的正确性。此外,基于计算数据,我们猜想完全胞腔的最大数量仅在循环排列中获得。

0
下载
关闭预览

相关内容

【干货书】数论与几何:算术几何导论,501页pdf
专知会员服务
51+阅读 · 2022年12月22日
【硬核书】树与网络上的概率,716页pdf
专知会员服务
72+阅读 · 2021年12月8日
专知会员服务
76+阅读 · 2021年3月16日
2022年“菲尔兹奖”,颁给了这四位年轻人
学术头条
0+阅读 · 2022年7月6日
重磅开讲:图灵奖得主—— Joseph Sifakis
THU数据派
0+阅读 · 2022年6月13日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月16日
Arxiv
0+阅读 · 2023年5月12日
VIP会员
相关资讯
2022年“菲尔兹奖”,颁给了这四位年轻人
学术头条
0+阅读 · 2022年7月6日
重磅开讲:图灵奖得主—— Joseph Sifakis
THU数据派
0+阅读 · 2022年6月13日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员