Effective dimension has proven very useful in geometric measure theory through the point-to-set principle \cite{LuLu18}\ that characterizes Hausdorff dimension by relativized effective dimension. Finite-state dimension is the least demanding effectivization in this context \cite{FSD}\ that among other results can be used to characterize Borel normality \cite{BoHiVi05}. In this paper we prove a characterization of finite-state dimension in terms of information content of a real number at a certain precision. We then use this characterization to prove a finite-state dimension point-to-set principle.
翻译:事实证明,有效的维度通过点定原则\cite{LuLu18}在几何测量理论中非常有用,该原则通过相对有效的维度为Hausdorff 维度定性。在这方面,Finite- State 维度是最低要求的实效化, 除其他结果外, 可用于描述Borél 常态 \cite{BoHiVi05}。 在本文中, 我们证明了以某种精确度度量真实数字的信息内容对有限国家维度的定性。 然后, 我们用这种定性来证明一个限定性维度点到设定原则 。