We develop a method to build distribution-free prediction intervals for time-series based on conformal inference, called \Verb|EnbPI| that wraps around any bootstrap ensemble estimator to construct sequential prediction intervals. \Verb|EnbPI| is closely related to the conformal prediction (CP) framework but does not require data exchangeability. Theoretically, these intervals attain finite-sample, approximately valid marginal coverage for broad classes of regression functions and time-series with strongly mixing stochastic errors. Computationally, \Verb|EnbPI| avoids overfitting and requires neither data-splitting nor training multiple ensemble estimators; it efficiently aggregates bootstrap estimators that have been trained. In general, \Verb|EnbPI| is easy to implement, scalable to producing arbitrarily many prediction intervals sequentially, and well-suited to a wide range of regression functions. We perform extensive real-data analyses to demonstrate its effectiveness.
翻译:我们开发了一种方法,在符合性推断的基础上为时间序列建立无分布的预测间隔,称为“Verb ⁇ EnbPI ”,该方法环绕着任何靴套共同估计值,以构建连续预测间隔。\Verb ⁇ EnbPI 与符合性预测框架密切相关,但并不要求数据互换。理论上,这些间隔达到一定的抽样,大致有效,覆盖广泛的回归函数和时间序列的边际范围,同时大量混合随机误差。比较,“Verb ⁇ EnbPI ” 避免过度匹配数据,也不要求数据分割或培训多个共性估计值;它有效地综合了经过培训的靴套估计值。一般来说,“Verb ⁇ EnbPI ” 很容易执行,可以任意地按顺序生成许多次的预测间隔,并且非常适合广泛的回归功能。我们进行了广泛的真实数据分析,以证明其有效性。