The widespread adoption of Large Language Models and publicly available ChatGPT has marked a significant turning point in the integration of Artificial Intelligence into people's everyday lives. The academic community has taken notice of these technological advancements and has expressed concerns regarding the difficulty of discriminating between what is real and what is artificially generated. Thus, researchers have been working on developing effective systems to identify machine-generated text. In this study, we utilize the GPT-3 model to generate scientific paper abstracts through Artificial Intelligence and explore various text representation methods when combined with Machine Learning models with the aim of identifying machine-written text. We analyze the models' performance and address several research questions that rise during the analysis of the results. By conducting this research, we shed light on the capabilities and limitations of Artificial Intelligence generated text.


翻译:大型语言模型的普及和公开可用的ChatGPT标志着人工智能融入人们日常生活的重要转折点。学术界已经注意到这些技术进展并表达了对区分真实和人工生成的困难的担忧。因此,研究人员一直致力于开发有效的系统来识别机器生成的文本。在本研究中,我们利用GPT-3模型通过人工智能生成科学论文摘要,并探索了多种文本表示方法与机器学习模型的结合,以识别机器书写的文本。我们分析了模型的性能,并在分析结果的过程中解决了几个研究问题。通过进行这项研究,我们揭示了人工智能生成文本的能力和局限性。

0
下载
关闭预览

相关内容

多模态认知计算
专知会员服务
173+阅读 · 2022年9月16日
专知会员服务
123+阅读 · 2020年9月8日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
6+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
15+阅读 · 2021年12月22日
Arxiv
13+阅读 · 2020年10月19日
Arxiv
18+阅读 · 2020年10月9日
A Survey of Deep Learning for Scientific Discovery
Arxiv
29+阅读 · 2020年3月26日
VIP会员
相关论文
相关基金
国家自然科学基金
6+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员