We propose FC, a new logic on words that combines finite model theory with the theory of concatenation - a first-order logic that is based on word equations. Like the theory of concatenation, FC is built around word equations; in contrast to it, its semantics are defined to only allow finite models, by limiting the universe to a word and all its factors. As a consequence of this, FC has many of the desirable properties of FO on finite models, while being far more expressive than FO[<]. Most noteworthy among these desirable properties are sufficient criteria for efficient model checking, and capturing various complexity classes by adding operators for transitive closures or fixed points. Not only does FC allow us to obtain new insights and techniques for expressive power and efficient evaluation of document spanners, but it also provides a general framework for logic on words that also has potential applications in other areas.


翻译:我们提出了将有限模型理论与连接理论相结合的词句的新逻辑FC, 这是一种将有限模型理论与连接理论相结合的新的逻辑,一种基于单词方程的一阶逻辑。 与组合理论一样, FC是围绕单词方程建立的; 与之相反, 其语义定义仅允许有限模型, 将宇宙限制在一个单词和所有因素上。 因此, FC有许多FO在有限模型上的可取属性, 其表达性远大于FO[ 。 其中最值得注意的特性是高效模式检查的充足标准, 并通过增加中转封闭或固定点操作员来捕捉各种复杂类别。 FC不仅允许我们获得新的洞察力和技术, 以及表达力和有效评估文件横跨器的高效评估, 而且还为在其他领域也有潜在应用的词提供了逻辑框架。

0
下载
关闭预览

相关内容

FC:Financial Cryptography and Data Security。 Explanation:金融密码与数据安全。 Publisher:Springer。 SIT: http://dblp.uni-trier.de/db/conf/fc/
最新《Transformers模型》教程,64页ppt
专知会员服务
305+阅读 · 2020年11月26日
专知会员服务
123+阅读 · 2020年9月8日
商业数据分析,39页ppt
专知会员服务
159+阅读 · 2020年6月2日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
word2Vec总结
AINLP
3+阅读 · 2019年11月2日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年7月5日
Arxiv
0+阅读 · 2021年7月2日
Arxiv
0+阅读 · 2021年7月2日
Arxiv
0+阅读 · 2021年7月2日
Arxiv
1+阅读 · 2021年7月1日
Arxiv
0+阅读 · 2021年7月1日
Arxiv
5+阅读 · 2020年12月10日
VIP会员
相关VIP内容
最新《Transformers模型》教程,64页ppt
专知会员服务
305+阅读 · 2020年11月26日
专知会员服务
123+阅读 · 2020年9月8日
商业数据分析,39页ppt
专知会员服务
159+阅读 · 2020年6月2日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
相关资讯
word2Vec总结
AINLP
3+阅读 · 2019年11月2日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
相关论文
Arxiv
0+阅读 · 2021年7月5日
Arxiv
0+阅读 · 2021年7月2日
Arxiv
0+阅读 · 2021年7月2日
Arxiv
0+阅读 · 2021年7月2日
Arxiv
1+阅读 · 2021年7月1日
Arxiv
0+阅读 · 2021年7月1日
Arxiv
5+阅读 · 2020年12月10日
Top
微信扫码咨询专知VIP会员