We present a numerical study of the local stability of mean curvature flow of rotationally symmetric, complete noncompact hypersurfaces with Type-II curvature blowup. Our numerical analysis employs a novel overlap method that constructs "numerically global" (i.e., with spatial domain arbitrarily large but finite) flow solutions with initial data covering analytically distinct regions. Our numerical results show that for certain prescribed families of perturbations, there are two classes of initial data that lead to distinct behaviors under mean curvature flow. Firstly, there is a "near" class of initial data which lead to the same singular behaviour as an unperturbed solution; in particular, the curvature at the tip of the hypersurface blows up at a Type-II rate no slower than $(T-t)^{-1}$. Secondly, there is a "far" class of initial data which lead to solutions developing a local Type-I nondegenerate neckpinch under mean curvature flow. These numerical findings further suggest the existence of a "critical" class of initial data which conjecturally lead to mean curvature flow of noncompact hypersurfaces forming local Type-II degenerate neckpinches with the highest curvature blowup rate strictly slower than $(T-t)^{-1}$.
翻译:我们对旋转对称性、完全不复杂的超表层以二型曲线爆炸方式进行中值曲线流的局部稳定性进行了数字研究。 我们的数值分析采用了一种新的重叠方法,在初始数据覆盖不同分析区域的情况下,构建了“数字性全球”(即空间域任意大但有限)流动解决方案。 我们的数值结果显示,对于某些指定的扰动家庭,初始数据分为两类,导致在平均曲线流下出现不同行为。 首先,有“近”类初始数据,导致与非曲线性溶液相同的单一行为;特别是,超表端端的曲线以不低于美元(T-t) ⁇ -1美元美元的初步数据速率。 其次,存在“远”类初始数据,从而导致在平均曲线流下开发一种本地型I型非变性颈脊。这些数字调查结果进一步表明,存在一种“临界”类初始数据,该类首级数据与未受围隔板溶液溶液溶液溶液溶液溶液的顶水平不低于(T-chillental-chillal-chillal-ral-ch) 最高正压度。