Recently, backdoor attacks pose a new security threat to the training process of deep neural networks (DNNs). Attackers intend to inject hidden backdoors into DNNs, such that the attacked model performs well on benign samples, whereas its prediction will be maliciously changed if hidden backdoors are activated by the attacker-defined trigger. Existing backdoor attacks usually adopt the setting that triggers are sample-agnostic, $i.e.,$ different poisoned samples contain the same trigger, resulting in that the attacks could be easily mitigated by current backdoor defenses. In this work, we explore a novel attack paradigm, where backdoor triggers are sample-specific. In our attack, we only need to modify certain training samples with invisible perturbation, while not need to manipulate other training components ($e.g.$, training loss, and model structure) as required in many existing attacks. Specifically, inspired by the recent advance in DNN-based image steganography, we generate sample-specific invisible additive noises as backdoor triggers by encoding an attacker-specified string into benign images through an encoder-decoder network. The mapping from the string to the target label will be generated when DNNs are trained on the poisoned dataset. Extensive experiments on benchmark datasets verify the effectiveness of our method in attacking models with or without defenses.


翻译:最近,后门攻击对深神经网络(DNNS)的培训过程构成新的安全威胁。攻击者打算将隐藏的后门输入DNS,这样攻击模型在良性样本中表现良好,而如果隐蔽的后门受到攻击者定义的触发,则其预测会恶意改变。现有的后门攻击通常采用触发器为样本不可知性的设定,即$.e.,不同的有毒样品含有相同的触发器,导致攻击很容易通过当前的后门防御来减轻。在这项工作中,我们探索了一种新的攻击模式,即后门触发器具有样本特性。在我们的攻击中,我们只需要修改某些具有隐性扰动性的培训样本,而不需要按照许多现有攻击中的要求操作其他培训部件($、培训损失和模型结构)。具体地说,在以 DNNNS 为基础的图像扫描器最新进展的启发下,我们通过将攻击者指定的字符串输入为良性图像,然后通过一个编码化的编码-decoder网络来进行修改,而不需要操作其他训练的测试部件。在数据库中绘制数据标签时,将数据定位系统进行。

0
下载
关闭预览

相关内容

iOS 8 提供的应用间和应用跟系统的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source: iOS 8 Extensions: Apple’s Plan for a Powerful App Ecosystem
专知会员服务
44+阅读 · 2020年10月31日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
已删除
将门创投
3+阅读 · 2018年10月11日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年10月9日
Arxiv
14+阅读 · 2020年10月26日
Adversarial Metric Attack for Person Re-identification
VIP会员
相关资讯
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
已删除
将门创投
3+阅读 · 2018年10月11日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员