Dynamic link prediction (DLP) makes graph prediction based on historical information. Since most DLP methods are highly dependent on the training data to achieve satisfying prediction performance, the quality of the training data is crucial. Backdoor attacks induce the DLP methods to make wrong prediction by the malicious training data, i.e., generating a subgraph sequence as the trigger and embedding it to the training data. However, the vulnerability of DLP toward backdoor attacks has not been studied yet. To address the issue, we propose a novel backdoor attack framework on DLP, denoted as Dyn-Backdoor. Specifically, Dyn-Backdoor generates diverse initial-triggers by a generative adversarial network (GAN). Then partial links of the initial-triggers are selected to form a trigger set, according to the gradient information of the attack discriminator in the GAN, so as to reduce the size of triggers and improve the concealment of the attack. Experimental results show that Dyn-Backdoor launches successful backdoor attacks on the state-of-the-art DLP models with success rate more than 90%. Additionally, we conduct a possible defense against Dyn-Backdoor to testify its resistance in defensive settings, highlighting the needs of defenses for backdoor attacks on DLP.


翻译:动态链接预测( DLP) 以历史信息为基础进行图表预测。 由于大多数 DLP 方法高度依赖培训数据来达到令人满意的预测性, 培训数据的质量至关重要。 幕后攻击会诱使 DLP 方法用恶意培训数据做出错误的预测, 即生成子线序列作为触发器并将其嵌入到培训数据中。 但是, DLP 对后门攻击的脆弱性还没有研究。 为了解决这个问题, 我们提议在 DLP 上建立一个创新的后门攻击框架, 称为Dyn- Backdoor 。 具体地说, Dyn- Backdoor 生成了由基因对抗网络( GAN) 生成的多种初始触发器。 然后根据攻击歧视者在 GAN 中的梯度信息, 将初始触发器的部分链接选为触发器。 以便降低触发器的大小, 并改进隐藏攻击。 实验结果显示 Dyn- Backdoor 成功后门攻击的DLP 模式对DLP 的防御性测试成功率超过 90 。 我们为D-L 防御后门攻击的防御性测试进行可能的D- L 。

1
下载
关闭预览

相关内容

网络中的链路预测(Link Prediction)是指如何通过已知的网络节点以及网络结构等信息预测网络中尚未产生连边的两个节点之间产生链接的可能性。这种预测既包含了对未知链接(exist yet unknown links)的预测也包含了对未来链接(future links)的预测。该问题的研究在理论和应用两个方面都具有重要的意义和价值 。
区块链白皮书(2020年),60页pdf
专知会员服务
92+阅读 · 2021年1月5日
【DeepMind】强化学习教程,83页ppt
专知会员服务
154+阅读 · 2020年8月7日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
LibRec 精选:你见过最有趣的论文标题是什么?
LibRec智能推荐
4+阅读 · 2019年11月6日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
学术会议 | 知识图谱顶会 ISWC 征稿:Poster/Demo
开放知识图谱
5+阅读 · 2019年4月16日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Arxiv
0+阅读 · 2021年11月30日
Arxiv
14+阅读 · 2020年10月26日
VIP会员
相关资讯
LibRec 精选:你见过最有趣的论文标题是什么?
LibRec智能推荐
4+阅读 · 2019年11月6日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
学术会议 | 知识图谱顶会 ISWC 征稿:Poster/Demo
开放知识图谱
5+阅读 · 2019年4月16日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Top
微信扫码咨询专知VIP会员