Dense sub-graphs of sparse graphs (communities), which appear in most real-world complex networks, play an important role in many contexts. Most existing community detection algorithms produce a hierarchical structure of community and seek a partition into communities that optimizes a given quality function. We propose new methods to improve the results of any of these algorithms. First we show how to optimize a general class of additive quality functions (containing the modularity, the performance, and a new similarity based quality function we propose) over a larger set of partitions than the classical methods. Moreover, we define new multi-scale quality functions which make it possible to detect the different scales at which meaningful community structures appear, while classical approaches find only one partition.
翻译:在大多数现实世界复杂的网络中出现的稀少图(社区)的密集子图(社区)在很多情况下都起着重要作用。大多数现有的社区检测算法产生了社区等级结构,并寻求分解成一个能够优化给定质量功能的社区。我们提出了改进任何这些算法结果的新方法。首先,我们展示了如何在比古典方法更大的一系列分区上优化普通类添加质量功能(包含模块性、性能和基于类似质量的功能 ) 。此外,我们定义了新的多尺度质量功能,从而可以探测出有意义的社区结构出现的不同尺度,而传统方法只发现一个分区。