Multivariate functions emerge naturally in a wide variety of data-driven models. Popular choices are expressions in the form of basis expansions or neural networks. While highly effective, the resulting functions tend to be hard to interpret, in part because of the large number of required parameters. Decoupling techniques aim at providing an alternative representation of the nonlinearity. The so-called decoupled form is often a more efficient parameterisation of the relationship while being highly structured, favouring interpretability. In this work two new algorithms, based on filtered tensor decompositions of first order derivative information are introduced. The method returns nonparametric estimates of smooth decoupled functions. Direct applications are found in, i.a. the fields of nonlinear system identification and machine learning.
翻译:多变量功能自然出现在各种各样的数据驱动模型中。 大众选择是以基础扩展或神经网络的形式表达的。 虽然效果很高, 但由此产生的功能往往难以解释, 部分原因是需要的参数很多。 脱钩技术旨在提供非线性替代表达方式。 所谓的脱钩形式往往是一种在高度结构化、有利于解释的情况下对关系进行更高效的参数化。 在这项工作中,引入了两种新的算法, 其依据是经过滤的第一阶衍生信息的分解。 方法返回了光线脱钩功能的非参数性估计值。 直接应用在非线性系统识别和机器学习领域。