We model a dense wireless local area network where the access points (APs) employ carrier sense multiple access (CSMA)-type medium access control protocol. In our model, the spatial locations of the set of active APs are modeled using the random sequential adsorption (RSA) process, which is more accurate in terms of the density of active APs compared to the Mat\'ern hard-core point process of type-II (MHPP-II) commonly used for modeling CSMA networks. Leveraging the theory of the RSA process from the statistical physics literature, we provide an approximate but accurate analytical result for the medium access probability of the typical AP in the network. Further, we present a numerical approach to determine the pair correlation function $(\mathtt{PCF})$, which is useful for the accurate estimation of the interference statistics. Using the $\mathtt{PCF}$ result, we derive the signal-to-interference-plus-noise ratio coverage probability of the typical link in the network. We validate the accuracy of the theoretical results through extensive Monte Carlo simulations.
翻译:我们建模了一个密集的无线局域网,接入点使用承运人感知多重访问(CSMA)类型的中位访问控制协议。在我们的模型中,使用随机顺序吸附(RSA)程序对一组活动AP的空间位置进行建模,这与通常用于建模 CSMA 网络的 Mat\'ern 硬点进程(MHPP-II) 相比,对活动AP 的密度比较准确。利用统计物理文献对RSA 过程的理论,我们为网络中典型AP 的中位访问概率提供了近似但准确的分析结果。此外,我们提出了一个数字方法,用以确定对等相关函数$(matht{PCF}),这对准确估计干扰统计数据有用。我们用 $matht{PCF} 得出网络典型链接的信号到干涉加噪音比率概率。我们通过广泛的蒙特卡洛模拟来验证理论结果的准确性。