Machine learning on graphs has been extensively studied in both academic and industry. However, as the literature on graph learning booms with a vast number of emerging methods and techniques, it becomes increasingly difficult to manually design the optimal machine learning algorithm for different graph-related tasks. To solve this critical challenge, automated machine learning (AutoML) on graphs which combines the strength of graph machine learning and AutoML together, is gaining attention from the research community. Therefore, we comprehensively survey AutoML on graphs in this paper, primarily focusing on hyper-parameter optimization (HPO) and neural architecture search (NAS) for graph machine learning. We further overview libraries related to automated graph machine learning and in-depth discuss AutoGL, the first dedicated open-source library for AutoML on graphs. In the end, we share our insights on future research directions for automated graph machine learning. This paper is the first systematic and comprehensive review of automated machine learning on graphs to the best of our knowledge.
翻译:然而,随着关于图表学习潮流的文献文献大量涌现出各种新方法和技术,手工设计用于不同图表相关任务的最佳机器学习算法变得越来越困难。为了解决这一重大挑战,在将图形机学习和自动ML的强度结合起来的图表上自动机器学习(自动ML)正在引起研究界的注意。因此,我们在本文的图表上全面调查自动ML,主要侧重于超参数优化和神经结构搜索(NAS),用于图形机学习。我们进一步概述与自动图形机学习有关的图书馆,并深入讨论AutoGL,这是第一个专门用于图形自动ML的开源图书馆。归根结,我们分享关于自动图形机学习的未来研究方向的见解。本文是首次系统、全面地审查从图表到最佳知识的自动计算机学习。