We explore new interactions between finite model theory and a number of classical streams of universal algebra and semigroup theory. After refocussing some finite model theoretic tools in universal algebraic context, we present a number of results. A key result is an example of a finite algebra whose variety is not finitely axiomatisable in first order logic, but which has first order definable finite membership problem. This algebra witnesses the simultaneous failure of the {\L}os-Tarski Theorem, the SP-preservation theorem and Birkhoff's HSP-preservation theorem at the finite level as well as providing a negative solution to the first order formulation of the long-standing Eilenberg Sch\"utzenberger problem. The example also shows that a pseudovariety without any finite pseudo-identity basis may be finitely axiomatisable in first order logic. Other results include the undecidability of deciding first order definability of the pseudovariety of a finite algebra and a mapping from any fixed template constraint satisfaction problem to a first order equivalent variety membership problem, thereby providing examples of variety membership problems complete in each of the classes $\texttt{L}$, $\texttt{NL}$, $\texttt{Mod}_p(\texttt{L})$, $\texttt{P}$ (provided they are nonempty), and infinitely many others (depending on complexity-theoretic assumptions).
翻译:我们探索了有限模型理论和一些通用代数和半组理论经典流之间的新互动。 在重新定位了某些在通用代数背景下的有限模型理论工具之后, 我们展示了一些结果。 一个关键结果是一个有限代数的示例, 它的种类在一阶逻辑中并非有一定的异同现象, 但是它首先具有可定义的有限会籍问题。 这个代数见证了 kL} or- Tarski 理论的同步失败; SP- 保存理论和 Birkhoff 的 HSP- 保有在有限水平上的HSP- porem, 并为长期的 Eilenberg Sch\\\\\ utzenberger 问题的第一个顺序配制提供了一种负面的解决方案。 这个例子还表明, 没有任何固定的伪身份基础的伪化可能是在第一阶逻辑中可以有一定的异异性。 其他结果包括确定 ror- prefileality 和 Birkhoff $ 的完整绘图, 在美元类中提供各种问题的示例 。