We explore new interactions between finite model theory and a number of classical streams of universal algebra and semigroup theory. After refocussing some finite model theoretic tools in universal algebraic context, we present a number of results. A key result is an example of a finite algebra whose variety is not finitely axiomatisable in first order logic, but which has first order definable finite membership problem. This algebra witnesses the simultaneous failure of the {\L}os-Tarski Theorem, the SP-preservation theorem and Birkhoff's HSP-preservation theorem at the finite level as well as providing a negative solution to the first order formulation of the long-standing Eilenberg Sch\"utzenberger problem. The example also shows that a pseudovariety without any finite pseudo-identity basis may be finitely axiomatisable in first order logic. Other results include the undecidability of deciding first order definability of the pseudovariety of a finite algebra and a mapping from any fixed template constraint satisfaction problem to a first order equivalent variety membership problem, thereby providing examples of variety membership problems complete in each of the classes $\texttt{L}$, $\texttt{NL}$, $\texttt{Mod}_p(\texttt{L})$, $\texttt{P}$ (provided they are nonempty), and infinitely many others (depending on complexity-theoretic assumptions).


翻译:我们探索了有限模型理论和一些通用代数和半组理论经典流之间的新互动。 在重新定位了某些在通用代数背景下的有限模型理论工具之后, 我们展示了一些结果。 一个关键结果是一个有限代数的示例, 它的种类在一阶逻辑中并非有一定的异同现象, 但是它首先具有可定义的有限会籍问题。 这个代数见证了 kL} or- Tarski 理论的同步失败; SP- 保存理论和 Birkhoff 的 HSP- 保有在有限水平上的HSP- porem, 并为长期的 Eilenberg Sch\\\\\ utzenberger 问题的第一个顺序配制提供了一种负面的解决方案。 这个例子还表明, 没有任何固定的伪身份基础的伪化可能是在第一阶逻辑中可以有一定的异异性。 其他结果包括确定 ror- prefileality 和 Birkhoff $ 的完整绘图, 在美元类中提供各种问题的示例 。

0
下载
关闭预览

相关内容

专知会员服务
161+阅读 · 2020年1月16日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年2月8日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员