Variables contained within the global oceans can detect and reveal the effects of the warming climate as the oceans absorb huge amounts of solar energy. Hence, information regarding the joint spatial distribution of ocean variables is critical for climate monitoring. In this paper, we investigate the spatial correlation structure between ocean temperature and salinity using data harvested from the Argo program and construct a model to capture their bivariate spatial dependence from the surface to the ocean's interior. We develop a flexible class of multivariate nonstationary covariance models defined in 3-dimensional (3D) space (longitude x latitude x depth) that allows for the variances and correlation to change along the vertical pressure dimension. These models are able to describe the joint spatial distribution of the two variables while incorporating the underlying vertical structure of the ocean. We demonstrate that proposed cross-covariance models describe the complex vertical cross-covariance structure well, while existing cross-covariance models including bivariate Mat\'{e}rn models poorly fit empirical cross-covariance structure. Furthermore, the results show that using one more variable significantly enhances the prediction of the other variable and that the estimated spatial dependence structures are consistent with the ocean stratification.
翻译:由于海洋吸收了大量的太阳能,全球海洋中包含的变量能够探测和揭示变暖气候的影响。因此,关于海洋变量共同空间分布的信息对于气候监测至关重要。在本文件中,我们利用从阿尔戈方案获取的数据,调查海洋温度和盐碱度之间的空间相关结构,并建立一个模型,从表层到海洋内部测量其空间依赖性。我们开发了三维(3D)空间(纬度x纬度x深度)定义的多变量非静止共变模型的灵活类别,允许垂直压力层面的变化和关联性。这些模型能够描述两个变量的联合空间分布,同时纳入海洋的垂直结构。我们证明,拟议的跨变量模型描述了复杂的垂直交叉变量结构,而现有的交叉变量模型包括双变量 Mat\ { { { e}rn 模型,不适于经验性交叉变量结构。此外,结果显示,使用一个更大的变量大大增强了其他变量的预测,估计的空间依赖性结构与海洋的分层一致。