Recent anti-spoofing systems focus on spoofing detection, where the task is only to determine whether the test audio is fake. However, there are few studies putting attention to identifying the methods of generating fake speech. Common spoofing attack algorithms in the logical access (LA) scenario, such as voice conversion and speech synthesis, can be divided into several stages: input processing, conversion, waveform generation, etc. In this work, we propose a system for classifying different spoofing attributes, representing characteristics of different modules in the whole pipeline. Classifying attributes for the spoofing attack other than determining the whole spoofing pipeline can make the system more robust when encountering complex combinations of different modules at different stages. In addition, our system can also be used as an auxiliary system for anti-spoofing against unseen spoofing methods. The experiments are conducted on ASVspoof 2019 LA data set and the proposed method achieved a 20\% relative improvement against conventional binary spoof detection methods.
翻译:最近的反潜入系统侧重于表面检测, 任务只是确定测试音频是否是假的。 然而, 很少有研究关注识别生成假言的方法。 逻辑访问( LA) 情景中常见的潜入攻击算法, 如语音转换和语音合成, 可以分为几个阶段: 输入处理、 转换、 波形生成等 。 在这项工作中, 我们提议了一种系统, 用于对不同的潜入属性进行分类, 代表整个管道中不同模块的特性 。 将潜入攻击的属性分类, 而不是确定整个潜入管道, 在遇到不同模块在不同阶段的复杂组合时, 可以使系统更加稳健。 此外, 我们的系统还可以用作一个辅助系统, 用来对抗隐蔽的潜入方法。 实验是在 ASVspoof 2019 LA数据集上进行的, 以及拟议的方法在常规二进式探测方法上取得了20 ⁇ 相对的改进 。