Identifiability of statistical models is a key notion in unsupervised representation learning. Recent work of nonlinear independent component analysis (ICA) employs auxiliary data and has established identifiable conditions. This paper proposes a statistical model of two latent vectors with single auxiliary data generalizing nonlinear ICA, and establishes various identifiability conditions. Unlike previous work, the two latent vectors in the proposed model can have arbitrary dimensions, and this property enables us to reveal an insightful dimensionality relation among two latent vectors and auxiliary data in identifiability conditions. Furthermore, surprisingly, we prove that the indeterminacies of the proposed model has the same as \emph{linear} ICA under certain conditions: The elements in the latent vector can be recovered up to their permutation and scales. Next, we apply the identifiability theory to a statistical model for graph data. As a result, one of the identifiability conditions includes an appealing implication: Identifiability of the statistical model could depend on the maximum value of link weights in graph data. Then, we propose a practical method for identifiable graph embedding. Finally, we numerically demonstrate that the proposed method well-recovers the latent vectors and model identifiability clearly depends on the maximum value of link weights, which supports the implication of our theoretical results


翻译:暂无翻译

0
下载
关闭预览

相关内容

【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
VIP会员
相关资讯
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员