The accurate computational study of wavepacket nuclear dynamics is considered to be a classically intractable problem, particularly with increasing dimensions. Here we present two algorithms that, in conjunction with other methods developed by us, will form the basis for performing quantum nuclear dynamics in arbitrary dimensions. For one algorithm, we present a direct map between the Born-Oppenheimer Hamiltonian describing the wavepacket time-evolution and the control parameters of a spin-lattice Hamiltonian that describes the dynamics of qubit states in an ion-trap quantum computer. This map is exact for three qubits, and when implemented, the dynamics of the spin states emulate those of the nuclear wavepacket. However, this map becomes approximate as the number of qubits grow. In a second algorithm we present a general quantum circuit decomposition formalism for such problems using a method called the Quantum Shannon Decomposition. This algorithm is more robust and is exact for any number of qubits, at the cost of increased circuit complexity. The resultant circuit is implemented on IBM's quantum simulator (QASM) for 3-7 qubits. In both cases the wavepacket dynamics is found to be in good agreement with the classical result and the corresponding vibrational frequencies obtained from the wavepacket density time-evolution, are in agreement to within a few tenths of a wavenumbers.
翻译:暂无翻译