Supervised learning is constrained by the availability of labeled data, which are especially expensive to acquire in the field of digital pathology. Making use of open-source data for pre-training or using domain adaptation can be a way to overcome this issue. However, pre-trained networks often fail to generalize to new test domains that are not distributed identically due to tissue stainings, types, and textures variations. Additionally, current domain adaptation methods mainly rely on fully-labeled source datasets. In this work, we propose Self-Rule to Multi-Adapt (SRMA), which takes advantage of self-supervised learning to perform domain adaptation, and removes the necessity of fully-labeled source datasets. SRMA can effectively transfer the discriminative knowledge obtained from a few labeled source domain's data to a new target domain without requiring additional tissue annotations. Our method harnesses both domains' structures by capturing visual similarity with intra-domain and cross-domain self-supervision. Moreover, we present a generalized formulation of our approach that allows the framework to learn from multiple source domains. We show that our proposed method outperforms baselines for domain adaptation of colorectal tissue type classification \new{in single and multi-source settings}, and further validate our approach on an in-house clinical cohort. The code and trained models are available open-source: https://github.com/christianabbet/SRA.


翻译:在数字病理学领域,使用开放源数据进行预培训或使用域适应,可以克服这一问题。然而,预先培训的网络往往无法将由于组织污渍、类型和质地变不同而不同分布的歧视性知识有效地推广到新的测试域。此外,目前域适应方法主要依赖全标签源数据集。在这项工作中,我们提议向多功能软件(SRMA)提供自控(SRMA)方法,该方法利用自我监督学习来进行域适应,并消除完全标签源数据集的必要性。但是,预先培训的网络往往无法将从几个标签源域数据中获得的歧视性知识推广到新的目标域,而不需要额外的组织说明。我们的方法主要依靠全标签源数据集。此外,我们提出了一种通用的方法,使框架能够从多个源域域域内进行学习,并消除完全标签的源数据集数据集数据集数据集的必要性。我们提出的方法超越了系统内部和跨部域域域码的系统分类。我们在多个源码/内部和跨部域域域域码上提出了一种通用的方法。我们提出的系统化的源码校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校际基线。我们。我们。我们法。我们法的校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外校外法。我们法。我们法。我们法。我们法。我们法的校外校外校外校外校外校外

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
专知会员服务
109+阅读 · 2020年3月12日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
机器学习相关资源(框架、库、软件)大列表
专知会员服务
39+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
Arxiv
10+阅读 · 2017年7月4日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员