We investigate a practical variant of the well-known polygonal visibility path (watchman) problem. For a polygon $P$, a minimum link visibility path is a polygonal visibility path in $P$ that has the minimum number of links. The problem of finding a minimum link visibility path is NP-hard for simple polygons. If the link-length (number of links) of a minimum link visibility path (tour) is $Opt$ for a simple polygon $P$ with $n$ vertices, we provide an algorithm with $O(kn^2)$ runtime that produces polygonal visibility paths (or tours) of link-length at most $(\gamma+a_l/(k-1))Opt$ (or $(\gamma+a_l/k)Opt$), where $k$ is a parameter dependent on $P$, $a_l$ is an output sensitive parameter and $\gamma$ is the approximation factor of an $O(k^3)$ time approximation algorithm for the graphic traveling salesman problem (path or tour version).
翻译:我们调查了已知多边形可见度路径(观察者)的实用变量。 对于多边形 $P$, 最小链接可见度路径是多边形路径, 以美元为单位, 其链接数量最少。 对于简单多边形, 找到最小链接可见度路径的问题在于 NP- 硬。 如果最小链接可见度路径( tour) 的链接长度( 链接数量) 是 $Opt$, 简单多边形 $P$, 并有 $ vertics, 我们提供一种计算法, 以O( kn ⁇ 2) 美元运行时间为单位, 以最多$( gamma+a_l/(k-1) 美元为单位, 或 $( gamma+a_l/k) Opt$, 美元为以美元为单位的参数取决于 $P$, $a_ la_ 是一个产出敏感参数, $\ gama$是图形旅行销售员问题( 方向或旅游版) 的近似值算系数。