Fast adaptive control is a critical component for reliable robot autonomy in rapidly changing operational conditions. While a robot dynamics model may be obtained from first principles or learned from data, updating its parameters is often too slow for online adaptation to environment changes. This motivates the use of machine learning techniques to learn disturbance descriptors from trajectory data offline as well as the design of adaptive control to estimate and compensate the disturbances online. This paper develops adaptive geometric control for rigid-body systems, such as ground, aerial, and underwater vehicles, that satisfy Hamilton's equations of motion over the SE(3) manifold. Our design consists of an offline system identification stage, followed by an online adaptive control stage. In the first stage, we learn a Hamiltonian model of the system dynamics using a neural ordinary differential equation (ODE) network trained from state-control trajectory data with different disturbance realizations. The disturbances are modeled as a linear combination of nonlinear descriptors. In the second stage, we design a trajectory tracking controller with disturbance compensation from an energy-based perspective. An adaptive control law is employed to adjust the disturbance model online proportional to the geometric tracking errors on the SE(3) manifold. We verify our adaptive geometric controller for trajectory tracking on a fully-actuated pendulum and an under-actuated quadrotor.
翻译:快速适应控制是快速变化操作条件下可靠机器人自主的关键组成部分。 虽然机器人动态模型可以从最初的原则中获取,或从数据中学习,但更新参数往往过于缓慢,无法在线适应环境变化。 这促使使用机器学习技术,从轨迹数据离线中学习扰动描述器,以及设计适应性控制,以在线估计和补偿扰动。 本文为地面、 空中和水下车辆等硬体系统开发了适应性几何控制器,以满足汉密尔顿对SE(3)多重运动的等式。 我们的设计包括离线系统识别阶段,随后是在线适应控制阶段。 在第一阶段,我们学习了汉密尔顿系统动态模型,使用经国家控制轨轨迹数据培训的神经普通差异方程式(ODE)网络。 扰动模拟是非线性描述器的线性组合。 在第二阶段,我们设计了轨迹跟踪控制器,从能源角度出发进行扰动补偿。 适应性控制法用于调整扰动模型,与SE(3)号双轨跟踪误差。 我们核查了在轨轨中进行完全的调整。