For caching with nonuniform file popularity, we aim to characterize the memory-rate tradeoff under uncoded cache placement. We consider the recently proposed Modified Coded Caching Scheme (MCCS) with the optimized cache placement based on the popularity-first approach to minimize the average delivery rate. We introduce two information-theoretic lower bounds on the average rate for caching under uncoded placement. For $K = 2$ users, we show that the optimized MCCS attains the lower bound and is optimal for caching with uncoded placement. For general $K$ users with distinct file requests, the optimized MCCS attains the popularity-first-based lower bound. When there are redundant file requests among $K$ users, we show a possible gap between the optimized MCCS and the lower bounds, which is attributed to zero-padding commonly used for coded delivery. We analyze the impact of zero-padding and its limitation. Simulation study shows that the loss is very small in general and only exists in some limited cases.
翻译:对于非统一文件的受欢迎程度,我们的目标是在未编码的缓存位置下确定存储率的权衡。我们考虑最近提出的修改编码缓存计划(MCCS),根据普及程度第一方法优化缓存安排,以尽量减少平均交付率。我们引入了两种信息理论下限,即在未编码的缓存平均比率方面降低两个信息理论下限。对于 $K = 2 的用户,我们显示优化的中央控制系统达到了较低的边框,是用未编码的放置方式缓存的最佳方式。对于有不同文件请求的普通用户,优化的中央控制系统达到了普及程度第一基点的低限。当用户有多余的文件请求时,我们显示了优化的中央控制系统与较低边框之间可能存在差距,这可归因于通常用于编码交付的零涂层。我们分析了零涂层及其限制的影响。模拟研究表明,损失在一般情况下非常小,只在有限的情况下存在。