Flapping-fin unmanned underwater vehicle (UUV) propulsion systems provide high maneuverability for naval tasks such as surveillance and terrain exploration. Recent work has explored the use of time-series neural network surrogate models to predict thrust from vehicle design and fin kinematics. We develop a search-based inverse model that leverages a kinematics-to-thrust neural network model for control system design. Our inverse model finds a set of fin kinematics with the multi-objective goal of reaching a target thrust and creating a smooth kinematic transition between flapping cycles. We demonstrate how a control system integrating this inverse model can make online, cycle-to-cycle adjustments to prioritize different system objectives.
翻译:近日的工作探索了使用时间序列神经网络替代模型来预测车辆设计和运动动力学的推力。我们开发了一种基于搜索的反向模型来利用运动到突袭的神经网络模型来进行控制系统设计。我们的反向模型发现一套有鳍运动模型,其多目标目标目标是达到目标推力,在闪烁周期之间创造平稳的运动过渡。我们展示了将这一反向模型整合起来的控制系统如何能进行在线、周期到周期的调整,以便确定不同系统目标的优先次序。