Bilingual lexicon induction (BLI) with limited bilingual supervision is a crucial yet challenging task in multilingual NLP. Current state-of-the-art BLI methods rely on the induction of cross-lingual word embeddings (CLWEs) to capture cross-lingual word similarities; such CLWEs are obtained 1) via traditional static models (e.g., VecMap), or 2) by extracting type-level CLWEs from multilingual pretrained language models (mPLMs), or 3) through combining the former two options. In this work, we propose a novel semi-supervised post-hoc reranking method termed BLICEr (BLI with Cross-Encoder Reranking), applicable to any precalculated CLWE space, which improves their BLI capability. The key idea is to 'extract' cross-lingual lexical knowledge from mPLMs, and then combine it with the original CLWEs. This crucial step is done via 1) creating a word similarity dataset, comprising positive word pairs (i.e., true translations) and hard negative pairs induced from the original CLWE space, and then 2) fine-tuning an mPLM (e.g., mBERT or XLM-R) in a cross-encoder manner to predict the similarity scores. At inference, we 3) combine the similarity score from the original CLWE space with the score from the BLI-tuned cross-encoder. BLICEr establishes new state-of-the-art results on two standard BLI benchmarks spanning a wide spectrum of diverse languages: it substantially outperforms a series of strong baselines across the board. We also validate the robustness of BLICEr with different CLWEs.
翻译:双语监管有限的双语语言感应(BLI)是多语种 NLP 中一项至关重要但具有挑战性的任务。 目前最新BLI方法依赖于跨语言嵌入(CLWES)的感应(CLWE),以获取跨语言词异同;通过传统的静态模型(例如VecMap)或2,通过将前两种选项合并,从多语言预先培训的语言模式(mPLM)或3中提取类型级CLWE(CLWE),从而获得1级CLWE(BLLLI)的感应征。在这项工作中,我们提出了一个名为BLICER(BLLLLL)的半监督级变异调后变异异异的组合方法,BLILLLLL(B)的直径直径直径直径直径比比(CLILLLLLL)的直径直径直径直径(BLWELLL)的直径直径直径直径直径直径直径直径比的CLLLLLLEM(B)和直径直径比的直径直径直径直径比的直径直径直径比的CLELELEM(C)的直的直的直的直径直距比的CLWLWEM(C)的直径比的直径比的直),以及C)的直路。关键位的直距C的C的C的C的直距的直径向的直径向的直距的直距的直距的直距C的直距的直的直的直的直的直的直的直的直的直距。