Convolutional neural networks (CNNs) are becoming increasingly deeper, wider, and non-linear because of the growing demand on prediction accuracy and analysis quality. The wide and deep CNNs, however, require a large amount of computing resources and processing time. Many previous works have studied model pruning to improve inference performance, but little work has been done for effectively reducing training cost. In this paper, we propose ClickTrain: an efficient and accurate end-to-end training and pruning framework for CNNs. Different from the existing pruning-during-training work, ClickTrain provides higher model accuracy and compression ratio via fine-grained architecture-preserving pruning. By leveraging pattern-based pruning with our proposed novel accurate weight importance estimation, dynamic pattern generation and selection, and compiler-assisted computation optimizations, ClickTrain generates highly accurate and fast pruned CNN models for direct deployment without any time overhead, compared with the baseline training. ClickTrain also reduces the end-to-end time cost of the state-of-the-art pruning-after-training methods by up to about 67% with comparable accuracy and compression ratio. Moreover, compared with the state-of-the-art pruning-during-training approach, ClickTrain reduces the accuracy drop by up to 2.1% and improves the compression ratio by up to 2.2X on the tested datasets, under similar limited training time.


翻译:由于对预测准确性和分析质量的需求日益增加,对预测准确性和分析质量的需求日益增长,连锁神经网络的深度、广度和非线性正在日益加深、广度和非线性化。但是,广度和深度的CNN需要大量的计算资源和处理时间。许多以前的工作都研究过模型调整,以提高推断性能,但在有效降低培训成本方面却没有做多少工作。在本文中,我们提议ClickTrain:为CNNs提供高效和准确的端对端培训和剪裁框架。与现有的运行培训工作不同,ClickTrain通过精细的架构保存处理提供更高的模型准确性和压缩比率。通过利用基于模式的剪裁,利用我们拟议的新的精确重量估计、动态模式的生成和选择以及编译者辅助的计算优化,ClickTrain生成了非常准确和快速的CNN模型,用于直接部署,而无需任何时间管理,与基线培训相比。ClickTrain还降低了州级后裁剪裁员率率,通过精度的精度和精确性排序,将数据压率提高到67%。

0
下载
关闭预览

相关内容

多标签学习的新趋势(2020 Survey)
专知会员服务
42+阅读 · 2020年12月6日
最新《Transformers模型》教程,64页ppt
专知会员服务
312+阅读 · 2020年11月26日
元学习与图神经网络逻辑推导,55页ppt
专知会员服务
129+阅读 · 2020年4月25日
专知会员服务
61+阅读 · 2020年3月19日
深度强化学习策略梯度教程,53页ppt
专知会员服务
183+阅读 · 2020年2月1日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
深度学习视频中多目标跟踪:论文综述
专知会员服务
94+阅读 · 2019年10月13日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Deep Compression/Acceleration:模型压缩加速论文汇总
极市平台
14+阅读 · 2019年5月15日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
AI/ML/DNN硬件加速设计怎么入门?
StarryHeavensAbove
10+阅读 · 2018年12月4日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
论文笔记之Meta-Tracker(ECCV2018)
统计学习与视觉计算组
16+阅读 · 2018年8月24日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年1月14日
Arxiv
4+阅读 · 2018年12月20日
Arxiv
6+阅读 · 2018年3月28日
VIP会员
相关VIP内容
多标签学习的新趋势(2020 Survey)
专知会员服务
42+阅读 · 2020年12月6日
最新《Transformers模型》教程,64页ppt
专知会员服务
312+阅读 · 2020年11月26日
元学习与图神经网络逻辑推导,55页ppt
专知会员服务
129+阅读 · 2020年4月25日
专知会员服务
61+阅读 · 2020年3月19日
深度强化学习策略梯度教程,53页ppt
专知会员服务
183+阅读 · 2020年2月1日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
深度学习视频中多目标跟踪:论文综述
专知会员服务
94+阅读 · 2019年10月13日
相关资讯
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Deep Compression/Acceleration:模型压缩加速论文汇总
极市平台
14+阅读 · 2019年5月15日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
AI/ML/DNN硬件加速设计怎么入门?
StarryHeavensAbove
10+阅读 · 2018年12月4日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
论文笔记之Meta-Tracker(ECCV2018)
统计学习与视觉计算组
16+阅读 · 2018年8月24日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员