We propose a novel universal construction of two-level overlapping Schwarz preconditioners for $2m$th-order elliptic boundary value problems, where $m$ is a positive integer. The word "universal" here signifies that the coarse space construction can be applied to any finite element discretization for any $m$ that satisfies some common assumptions. We present numerical results for conforming, nonconforming, and discontinuous Galerkin-type finite element discretizations for high-order problems to demonstrate the scalability of the proposed two-level overlapping Schwarz preconditioners.
翻译:暂无翻译