Medical Image Segmentation is a useful application for medical image analysis including detecting diseases and abnormalities in imaging modalities such as MRI, CT etc. Deep learning has proven to be promising for this task but usually has a low accuracy because of the lack of appropriate publicly available annotated or segmented medical datasets. In addition, the datasets that are available may have a different texture because of different dosage values or scanner properties than the images that need to be segmented. This paper presents a StyleGAN-driven approach for segmenting publicly available large medical datasets by using readily available extremely small annotated datasets in similar modalities. The approach involves augmenting the small segmented dataset and eliminating texture differences between the two datasets. The dataset is augmented by being passed through six different StyleGANs that are trained on six different style images taken from the large non-annotated dataset we want to segment. Specifically, style transfer is used to augment the training dataset. The annotations of the training dataset are hence combined with the textures of the non-annotated dataset to generate new anatomically sound images. The augmented dataset is then used to train a U-Net segmentation network which displays a significant improvement in the segmentation accuracy in segmenting the large non-annotated dataset.
翻译:医学图像分解是医学图像分析的有用应用,包括发现疾病和成像模式(如磁共振、CT等)中的异常现象。 深层学习证明对这项任务很有希望,但通常由于缺乏适当的公开可得附加说明或分解医疗数据集,因此准确性较低。 此外,现有的数据集可能具有不同的纹理,因为剂量值或扫描仪特性不同于需要分解的图像。本文展示了StyleGAN驱动的方法,通过使用类似模式的极小附加说明数据集,对公开提供的大型医疗数据集进行分解。这一方法涉及扩大小片段数据集和消除两个数据集之间的纹理差异。通过六种不同的StyleGAN系统传递数据集,这些StyleGAN系统在从我们想要分解的大非附加说明数据集中拍摄的六种不同样式图像上得到了培训。具体地说,使用样式传输来增强培训数据集。因此,培训数据集的说明与非附加说明性极小的数据集的文本组合相结合,以产生新的解剖析图解式图解图解图解图象。 增强了显示中的重要部分数据元集,在显示中用于对大分路段的改进。