Counting the number of homomorphisms of a pattern graph H in a large input graph G is a fundamental problem in computer science. There are myriad applications of this problem in databases, graph algorithms, and network science. Often, we need more than just the total count. Especially in large network analysis, we wish to compute, for each vertex v of G, the number of H-homomorphisms that v participates in. This problem is referred to as homomorphism orbit counting, as it relates to the orbits of vertices of H under its automorphisms. Given the need for fast algorithms for this problem, we study when near-linear time algorithms are possible. A natural restriction is to assume that the input graph G has bounded degeneracy, a commonly observed property in modern massive networks. Can we characterize the patterns H for which homomorphism orbit counting can be done in linear time? We discover a dichotomy theorem that resolves this problem. For pattern H, let l be the length of the longest induced path between any two vertices of the same orbit (under the automorphisms of H). If l <= 5, then H-homomorphism orbit counting can be done in linear time for bounded degeneracy graphs. If l > 5, then (assuming fine-grained complexity conjectures) there is no near-linear time algorithm for this problem. We build on existing work on dichotomy theorems for counting the total H-homomorphism count. Somewhat surprisingly, there exist (and we characterize) patterns H for which the total homomorphism count can be computed in linear time, but the corresponding orbit counting problem cannot be done in near-linear time.
翻译:计算大输入图G G 中模式图H 的同质性数是计算机科学的一个根本问题。 在数据库、 图形算法和网络科学中, 这个问题有各种各样的应用。 通常, 我们需要的不仅仅是总数。 特别是在大型网络分析中, 我们希望对每个顶点对G 进行计算。 对于每个顶点对G, 我们想要对每个顶点对G 的数值进行计算。 这个问题被称为同质性轨道计算, 因为它与H 顶点轨道的轨道有关, 因为它与其自变形态下的问题有关。 鉴于这一问题需要快速算法, 我们研究这一问题在数据库、 图形算法和网络科学中应用的问题。 自然限制是假设输入图G 已经捆绑了退化性, 这是在现代大型网络中常见的属性。 我们能否辨别出H 共性轨道的轨数是如何解决这个问题的。 在模式H 中, 直线性 H, 直线线轨道上的任何两个顶点的直径向路径都存在。 在轨轨道上, 直径直线轨道上, 直径直线轨道上的直径对 H 直轨道上, 直线轨道上的直径直线数是 H 。