We study the problems of counting copies and induced copies of a small pattern graph $H$ in a large host graph $G$. Recent work fully classified the complexity of those problems according to structural restrictions on the patterns $H$. In this work, we address the more challenging task of analysing the complexity for restricted patterns and restricted hosts. Specifically we ask which families of allowed patterns and hosts imply fixed-parameter tractability, i.e., the existence of an algorithm running in time $f(H)\cdot |G|^{O(1)}$ for some computable function $f$. Our main results present exhaustive and explicit complexity classifications for families that satisfy natural closure properties. Among others, we identify the problems of counting small matchings and independent sets in subgraph-closed graph classes $\mathcal{G}$ as our central objects of study and establish the following crisp dichotomies as consequences of the Exponential Time Hypothesis: (1) Counting $k$-matchings in a graph $G\in\mathcal{G}$ is fixed-parameter tractable if and only if $\mathcal{G}$ is nowhere dense. (2) Counting $k$-independent sets in a graph $G\in\mathcal{G}$ is fixed-parameter tractable if and only if $\mathcal{G}$ is nowhere dense. Moreover, we obtain almost tight conditional lower bounds if $\mathcal{G}$ is somewhere dense, i.e., not nowhere dense. These base cases of our classifications subsume a wide variety of previous results on the matching and independent set problem, such as counting $k$-matchings in bipartite graphs (Curticapean, Marx; FOCS 14), in $F$-colourable graphs (Roth, Wellnitz; SODA 20), and in degenerate graphs (Bressan, Roth; FOCS 21), as well as counting $k$-independent sets in bipartite graphs (Curticapean et al.; Algorithmica 19).
翻译:我们研究如何用大主机图 $G$ 来计算一个小模式图的复制件和导出复制件。 最近的工作根据对模式的结构性限制完全分类了这些问题的复杂性 $H$。 在这项工作中, 我们处理分析限制模式和限制主机的复杂程度这一更具挑战性的任务。 具体地说, 我们询问, 哪些允许模式和主机的家族意味着固定参数的可移动性, 也就是说, 存在一个以时间( H)\ cdot 美元运行的算法; 一些可比较的函数 $@G_O(1)$ 。 我们的主要结果显示, 满足自然关闭属性的家庭的详尽和明确的复杂程度分类 。 除其他之外, 我们确定在闭合的图形类中小匹配和独立设置为 $mathal_G} 作为我们的核心研究对象, 将以下的直径差作为“ 时间定位” 后果: (1) 以20美元计 美元 美元 ; 以 美元 以 美元 美元 直径为直径, 如果以 美元 直径为直径 直径 直方 直方 。