We study the problems of counting copies and induced copies of a small pattern graph $H$ in a large host graph $G$. Recent work fully classified the complexity of those problems according to structural restrictions on the patterns $H$. In this work, we address the more challenging task of analysing the complexity for restricted patterns and restricted hosts. Specifically we ask which families of allowed patterns and hosts imply fixed-parameter tractability, i.e., the existence of an algorithm running in time $f(H)\cdot |G|^{O(1)}$ for some computable function $f$. Our main results present exhaustive and explicit complexity classifications for families that satisfy natural closure properties. Among others, we identify the problems of counting small matchings and independent sets in subgraph-closed graph classes $\mathcal{G}$ as our central objects of study and establish the following crisp dichotomies as consequences of the Exponential Time Hypothesis: (1) Counting $k$-matchings in a graph $G\in\mathcal{G}$ is fixed-parameter tractable if and only if $\mathcal{G}$ is nowhere dense. (2) Counting $k$-independent sets in a graph $G\in\mathcal{G}$ is fixed-parameter tractable if and only if $\mathcal{G}$ is nowhere dense. Moreover, we obtain almost tight conditional lower bounds if $\mathcal{G}$ is somewhere dense, i.e., not nowhere dense. These base cases of our classifications subsume a wide variety of previous results on the matching and independent set problem, such as counting $k$-matchings in bipartite graphs (Curticapean, Marx; FOCS 14), in $F$-colourable graphs (Roth, Wellnitz; SODA 20), and in degenerate graphs (Bressan, Roth; FOCS 21), as well as counting $k$-independent sets in bipartite graphs (Curticapean et al.; Algorithmica 19).


翻译:我们研究如何用大主机图 $G$ 来计算一个小模式图的复制件和导出复制件。 最近的工作根据对模式的结构性限制完全分类了这些问题的复杂性 $H$。 在这项工作中, 我们处理分析限制模式和限制主机的复杂程度这一更具挑战性的任务。 具体地说, 我们询问, 哪些允许模式和主机的家族意味着固定参数的可移动性, 也就是说, 存在一个以时间( H)\ cdot 美元运行的算法; 一些可比较的函数 $@G_O(1)$ 。 我们的主要结果显示, 满足自然关闭属性的家庭的详尽和明确的复杂程度分类 。 除其他之外, 我们确定在闭合的图形类中小匹配和独立设置为 $mathal_G} 作为我们的核心研究对象, 将以下的直径差作为“ 时间定位” 后果: (1) 以20美元计 美元 美元 ; 以 美元 以 美元 美元 直径为直径, 如果以 美元 直径为直径 直径 直方 直方 。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年1月13日
Arxiv
0+阅读 · 2023年1月12日
Arxiv
20+阅读 · 2021年9月22日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员