Traditional stabilizer codes operate over prime power local-dimensions. In this work we extend the stabilizer formalism using the local-dimension-invariant setting to import stabilizer codes from these standard local-dimensions to other cases. In particular, we show that any traditional stabilizer code can be used for analog continuous-variable codes, and consider restrictions in phase space and discretized phase space. This puts this framework on equivalent footing as traditional stabilizer codes. Following this, using extensions of the prior ideas, we show that a stabilizer code originally designed with a finite field local-dimension can be transformed into a code with the same $n$, $k$, and $d$ parameters for any integral domain ring. This is of theoretical interest and can be of use for systems whose local-dimension is better described by mathematical rings, for which this permits the use of traditional stabilizer codes for protecting their information as well.
翻译:传统的稳定量子码适用于素数幂局部维度。在这项工作中,我们使用局部维度不变的设置扩展了稳定器形式,将稳定量子码从这些标准局部维度导入到其他情况中。特别地,我们展示了任何传统的稳定量子码都可以用于模拟连续变量码,并考虑了相空间和离散相空间的限制。这将本框架置于与传统稳定量子码相等的基础上。在此之后,我们使用先前思想的扩展,展示了任何有限域局部维度所设计的稳定量子码都可以转化为具有相同$n$,$k$和$d$参数的任何整环环的代码。这对于局部维度更适合由数学环描述的系统具有理论价值,并且对于该系统,可以使用传统的稳定量子码来保护它们的信息。