Given a class of graphs $\mathcal{H}$, the problem $\oplus\mathsf{Sub}(\mathcal{H})$ is defined as follows. The input is a graph $H\in \mathcal{H}$ together with an arbitrary graph $G$. The problem is to compute, modulo $2$, the number of subgraphs of $G$ that are isomorphic to $H$. The goal of this research is to determine for which classes $\mathcal{H}$ the problem $\oplus\mathsf{Sub}(\mathcal{H})$ is fixed-parameter tractable (FPT), i.e., solvable in time $f(|H|)\cdot |G|^{O(1)}$. Curticapean, Dell, and Husfeldt (ESA 2021) conjectured that $\oplus\mathsf{Sub}(\mathcal{H})$ is FPT if and only if the class of allowed patterns $\mathcal{H}$ is "matching splittable", which means that for some fixed $B$, every $H \in \mathcal{H}$ can be turned into a matching (a graph in which every vertex has degree at most $1$) by removing at most $B$ vertices. Assuming the randomised Exponential Time Hypothesis, we prove their conjecture for (I) all hereditary pattern classes $\mathcal{H}$, and (II) all tree pattern classes, i.e., all classes $\mathcal{H}$ such that every $H\in \mathcal{H}$ is a tree. We also establish almost tight fine-grained upper and lower bounds for the case of hereditary patterns (I).


翻译:根据一个图表 $\ mathcal{H} 美元, 问题 {opl\ mathsf{Sub} (\ mathcal{H} ) 定义如下。 输入为 $H\ in\ mathcal{H} 美元, 加上一个任意的图形$G$。 问题在于计算, modulo 2美元, 以G美元为美元, 以美元为美元。 本研究的目标是确定哪个类别 $\ macal{ maths{ H} 问题 $ $\ 美元 。 问题在于确定 美元为 美元, 美元为 美元为 美元 。 美元为 美元, 美元为 美元, 美元为 美元, 最多為 美元 。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年3月1日
Arxiv
0+阅读 · 2023年2月28日
Principal Neighbourhood Aggregation for Graph Nets
Arxiv
17+阅读 · 2020年6月7日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员