Deep neural networks are vulnerable to adversarial examples in Natural Language Processing. However, existing textual adversarial attacks usually utilize the gradient or prediction confidence to generate adversarial examples, making it hard to be deployed in real-world applications. To this end, we consider a rarely investigated but more rigorous setting, namely hard-label attack, in which the attacker could only access the prediction label. In particular, we find that the changes on prediction label caused by word substitutions on the adversarial example could precisely reflect the importance of different words. Based on this observation, we propose a novel hard-label attack, called Learning-based Hybrid Local Search (LHLS) algorithm, which effectively estimates word importance with the prediction label from the attack history and integrate such information into hybrid local search algorithm to optimize the adversarial perturbation. Extensive evaluations for text classification and textual entailment using various datasets and models show that our LHLS significantly outperforms existing hard-label attacks regarding the attack performance as well as adversary quality.


翻译:然而,现有的文字对抗性攻击通常使用梯度或预测信心来生成对抗性例子,因此很难在现实世界应用中应用。为此,我们认为很少经过调查但更严格的环境,即硬标签攻击,攻击者只能进入预测标签。特别是,我们发现,在对抗性攻击的例子中,用词替换导致的预测标签变化能够准确地反映不同词的重要性。基于这一观察,我们提议采用一种新的硬标签攻击,称为学习性混合地方搜索(LHLS)算法,与攻击史的预测标签有效估计单词重要性,并将这类信息纳入当地混合搜索算法,以优化对抗性扰动。对文本分类和文字要求的广泛评价,利用各种数据集和模型显示,我们的LHLS大大超越了攻击性能方面的现有硬标签攻击。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
167+阅读 · 2020年3月18日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
13+阅读 · 2022年4月12日
Arxiv
13+阅读 · 2019年11月14日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
相关论文
Arxiv
0+阅读 · 2022年4月20日
Arxiv
13+阅读 · 2022年4月12日
Arxiv
13+阅读 · 2019年11月14日
相关基金
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员