In this work, we present a method for a probabilistic fusion of external depth and onboard proximity data to form a volumetric 3-D map of a robot's environment. We extend the Octomap framework to update a representation of the area around the robot, dependent on each sensor's optimal range of operation. Areas otherwise occluded from an external view are sensed with onboard sensors to construct a more comprehensive map of a robot's nearby space. Our simulated results show that a more accurate map with less occlusions can be generated by fusing external depth and onboard proximity data.
翻译:在这项工作中,我们提出了一个将外部深度和机载近距离数据进行概率合并的方法,以形成机器人环境的体积三维地图。我们扩展了奥克托马普框架,以更新机器人周围区域的表示,取决于每个传感器的最佳操作范围。否则从外部观点中隐蔽的区域在机载传感器中被感知,以构建一个更全面的机器人附近空间地图。我们的模拟结果表明,使用外部深度和机载近距离数据可以产生出一个更精确的、不那么隐蔽的地图。