This paper investigates Gaussian Markov random field approximations to nonstationary Gaussian fields using graph representations of stochastic partial differential equations. We establish approximation error guarantees building on the theory of spectral convergence of graph Laplacians. The proposed graph representations provide a generalization of the Mat\'ern model to unstructured point clouds, and facilitate inference and sampling using linear algebra methods for sparse matrices. In addition, they bridge and unify several models in Bayesian inverse problems, spatial statistics and graph-based machine learning. We demonstrate through examples in these three disciplines that the unity revealed by graph representations facilitates the exchange of ideas across them.
翻译:本文调查高森·马尔科夫随机字段近似非静止高斯域的情况,使用随机部分偏差方程式的图形表示法对非静止高斯域进行勘测。我们根据拉普拉西亚图的光谱趋同理论建立近似差错保证。提议的图表表示法提供了马特尔恩模型对无结构点云的概括性,便于使用线性代数方法对稀薄基质进行推断和取样。此外,它们连接并统一了巴伊西亚反向问题、空间统计和基于图形的机器学习的若干模型。我们通过这三个学科的范例表明,图表表示法所显示的统一性有助于在它们之间交换意见。