Popular network models such as the mixed membership and standard stochastic block model are known to exhibit distinct geometric structure when embedded into $\mathbb{R}^{d}$ using spectral methods. The resulting point cloud concentrates around a simplex in the first model, whereas it separates into clusters in the second. By adopting the formalism of generalised random dot-product graphs, we demonstrate that both of these models, and different mixing regimes in the case of mixed membership, may be distinguished by the persistent homology of the underlying point distribution in the case of adjacency spectral embedding. Moreover, despite non-identifiability issues, we show that the persistent homology of the support of the distribution and its super-level sets can be consistently estimated. As an application of our consistency results, we provide a topological hypothesis test for distinguishing the standard and mixed membership stochastic block models.


翻译:使用光谱方法嵌入 $\ mathbb{R ⁇ d} 美元时,众所周知,混合成份和标准随机区块模型等大众网络模型显示出独特的几何结构。 由此产生的点云围绕第一个模型的简单x,而将其分为第二模型的组。 通过采用一般随机点产品图的形式主义,我们证明,在混合成份的情况下,这两种模型和不同的混合制度可以区别于相近光谱嵌入情况下对底点分布的持久性同质性。 此外,尽管存在不可识别的问题,但我们表明,对分布支持及其超级级集的持久性同质性可以进行一致估计。 作为我们一致性结果的应用,我们提供了一种地形假设测试,以区分标准成份和混合成份类群块模型。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
最新《图理论》笔记书,98页pdf
专知会员服务
74+阅读 · 2020年12月27日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
图节点嵌入(Node Embeddings)概述,9页pdf
专知会员服务
39+阅读 · 2020年8月22日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
5+阅读 · 2018年2月28日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
10+阅读 · 2021年11月3日
Directional Graph Networks
Arxiv
27+阅读 · 2020年12月10日
Arxiv
6+阅读 · 2019年11月14日
Graph Analysis and Graph Pooling in the Spatial Domain
Arxiv
23+阅读 · 2018年10月1日
Arxiv
4+阅读 · 2018年7月4日
VIP会员
相关VIP内容
最新《图理论》笔记书,98页pdf
专知会员服务
74+阅读 · 2020年12月27日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
图节点嵌入(Node Embeddings)概述,9页pdf
专知会员服务
39+阅读 · 2020年8月22日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
5+阅读 · 2018年2月28日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
10+阅读 · 2021年11月3日
Directional Graph Networks
Arxiv
27+阅读 · 2020年12月10日
Arxiv
6+阅读 · 2019年11月14日
Graph Analysis and Graph Pooling in the Spatial Domain
Arxiv
23+阅读 · 2018年10月1日
Arxiv
4+阅读 · 2018年7月4日
Top
微信扫码咨询专知VIP会员