Deep Generative Models (DGMs) are a popular class of deep learning models which find widespread use because of their ability to synthesize data from complex, high-dimensional manifolds. However, even with their increasing industrial adoption, they haven't been subject to rigorous security and privacy analysis. In this work we examine one such aspect, namely backdoor attacks on DGMs which can significantly limit the applicability of pre-trained models within a model supply chain and at the very least cause massive reputation damage for companies outsourcing DGMs form third parties. While similar attacks scenarios have been studied in the context of classical prediction models, their manifestation in DGMs hasn't received the same attention. To this end we propose novel training-time attacks which result in corrupted DGMs that synthesize regular data under normal operations and designated target outputs for inputs sampled from a trigger distribution. These attacks are based on an adversarial loss function that combines the dual objectives of attack stealth and fidelity. We systematically analyze these attacks, and show their effectiveness for a variety of approaches like Generative Adversarial Networks (GANs) and Variational Autoencoders (VAEs), as well as different data domains including images and audio. Our experiments show that - even for large-scale industry-grade DGMs (like StyleGAN) - our attacks can be mounted with only modest computational effort. We also motivate suitable defenses based on static/dynamic model and output inspections, demonstrate their usefulness, and prescribe a practical and comprehensive defense strategy that paves the way for safe usage of DGMs.


翻译:深层生成模型(DGM)是一批广受欢迎的深层次学习模型(DGM),由于它们能够综合来自复杂、高维的多层数据,因此被广泛使用。然而,即使它们日益被工业采用,它们也没有受到严格的安全和隐私分析。在这项工作中,我们检查了一个这样的方面,即对DGM的幕后攻击,这可以大大限制在模范供应链中预先培训的模型的适用性,至少对外包DGMs的第三方公司造成巨大的声誉损害。虽然在古典预测模型中研究过类似的实际攻击情景,但它们在DGMs中的表现却没有得到同样的关注。为此,我们提出了新的培训时间攻击,导致DGMs在正常操作中将常规数据综合起来,并为从触发分布中抽样的投入指定目标产出。这些攻击是以对抗性损失功能为基础,将攻击的隐形和真实性双重目标结合起来。我们系统分析这些攻击,并展示了它们对于诸如General Aversarial网络(GANs)和Variational-eal Agencial-egrational devidustrational destrations (Val Gal-de) viewal deview Stal destrational destrational destration ims) 以及我们的大规模和制动动动动动动动的图像(Val-destrational-de)战略,可以展示我们的磁能/deal-

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
专知会员服务
44+阅读 · 2020年10月31日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
30+阅读 · 2021年8月18日
Arxiv
14+阅读 · 2020年10月26日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员