Robotic deformable-object manipulation is a challenge in the robotic industry because deformable objects have complicated and various object states. Predicting those object states and updating manipulation planning is time-consuming and computationally expensive. In this paper, we propose learning known configurations of garments to allow a robot to recognise garment states and choose a pre-designed manipulation plan for garment flattening.
翻译:机器人的变形物体操作是机器人工业面临的一个挑战,因为变形物体具有复杂和不同的物体状态。 预测这些物体状态和更新操纵规划耗时且计算成本昂贵。 在本论文中,我们提议学习已知的服装配置,让机器人识别服装状态,并选择事先设计的服装平整操作计划。