We offer an alternative proof, using the Stein-Chen method, of Bollob\'{a}s' theorem concerning the distribution of the extreme degrees of a random graph. Our proof also provides a rate of convergence of the extreme degree to its asymptotic distribution. The same method also applies in a more general setting where the probability of every pair of vertices being connected by edges depends on the number of vertices.
翻译:我们使用Stein-Chen方法提供了一种替代证据,即Bollob\'{a}s关于随机图极端度分布的理论。我们的证据也提供了极端度与其无症状分布的趋同率。同样的方法也适用于更一般的环境,在这个环境里,每对脊椎被边缘连接的概率取决于脊椎的数量。