Understanding speaker's feelings and producing appropriate responses with emotion connection is a key communicative skill for empathetic dialogue systems. In this paper, we propose a simple technique called Affective Decoding for empathetic response generation. Our method can effectively incorporate emotion signals during each decoding step, and can additionally be augmented with an auxiliary dual emotion encoder, which learns separate embeddings for the speaker and listener given the emotion base of the dialogue. Extensive empirical studies show that our models are perceived to be more empathetic by human evaluations, in comparison to several strong mainstream methods for empathetic responding.
翻译:理解演讲者的感受和通过情感连接产生适当的反应是同情性对话系统的关键交流技巧。 在本文中,我们提出一种简单的技术,名为“对同情性反应生成的情感解说 ” 。 我们的方法可以有效地将情感信号纳入每个解码步骤,还可以辅之以一个辅助性双重情感编码器,在对话的情感基础下为演讲者和听众学习单独的嵌入。 广泛的实证研究表明,人类评估认为我们的模型更具有同情性,相比之下,与对同情性反应的几种强有力的主流方法相比,人类评估认为我们的模型更具有同情性。