The cyber-physical convergence, the fast expansion of the Internet at its edge, and tighter interactions between human users and their personal mobile devices push towards a data-centric Internet where the human user becomes more central than ever. We argue that this will profoundly impact primarily on the way data should be handled in the Next Generation Internet. It will require a radical change of the Internet data-management paradigm, from the current platform-centric to a human-centric model. In this paper we present a new paradigm for Internet data management that we name Internet of People (IoP) because it embeds human behavior models in its algorithms. To this end, IoP algorithms exploit quantitative models of the humans' individual and social behavior, from sociology, anthropology, psychology, economics, physics. IoP is not a replacement of the current Internet networking infrastructure, but it exploits legacy Internet services as (reliable) primitives to achieve end-to-end connectivity on a global-scale. In this opinion paper, we first discuss the key features of the IoP paradigm along with the underlying research issues and challenges. Then, we present emerging data-management paradigms that are anticipating IoP.


翻译:网络物理趋同、互联网在其边缘的快速扩展、人类用户及其个人移动装置之间的更紧密互动,推动以数据为中心的互联网,使人类用户变得比以往任何时候都更加重要。 我们争辩说,这将主要对下一代互联网处理数据的方式产生深刻影响。 这将需要彻底改变互联网数据管理模式,从目前的以平台为中心的模式转变为以人为中心的模式。 在本文中,我们提出了互联网数据管理的新模式,我们命名为“人互联网”(IoP),因为它将人类行为模型嵌入其算法。为此,IoP算法将利用人类个人和社会行为的数量模型,从社会学、人类学、心理学、经济学、物理学等角度加以利用。IoP并不是目前互联网网络基础设施的替代,而是将传统的互联网服务作为全球规模上实现端到端连接的(可信赖的)原始工具加以利用。在本意见文件中,我们首先讨论了IoP模式的关键特征以及潜在的研究问题和挑战。然后,我们提出了正在形成的数据管理模式,以对抗IP。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年8月18日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
35+阅读 · 2021年8月2日
Arxiv
92+阅读 · 2021年5月17日
A Survey of Deep Learning for Scientific Discovery
Arxiv
29+阅读 · 2020年3月26日
VIP会员
相关VIP内容
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年8月18日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员