This paper considers a cooperative jamming (CJ)-aided secure wireless communication system. Conventionally, the jammer transmits Gaussian noise (GN) to enhance security; however, the GN scheme also degrades the legitimate receiver's performance. Encoded jamming (EJ) mitigates this interference but does not always outperform GN under varying channel conditions. To address this limitation, we propose a joint optimization framework that integrates reconfigurable intelligent surface (RIS) with EJ to maximize the secrecy rate. In the multiple-input single-output (MISO) case, we adopt a semidefinite relaxation (SDR)-based alternating optimization method, while in the multiple-input multiple-output (MIMO) case, we develop an alternating optimization algorithm based on the weighted sum mean-square-error minimization (WMMSE) scheme. Furthermore, we are the first to incorporate EJ into an integrated sensing and communication (ISAC) system, characterizing the Pareto boundary between secrecy rate and sensing mutual information (MI) by solving the resulting joint optimization problem using a modified WMMSE-based algorithm. Simulation results show that the proposed schemes significantly outperform benchmark methods in secrecy rate across diverse channel conditions and clearly reveal the trade-off between security and sensing.
翻译:暂无翻译