We demonstrate Tensor Query Processor (TQP): a query processor that automatically compiles relational operators into tensor programs. By leveraging tensor runtimes such as PyTorch, TQP is able to: (1) integrate with ML tools (e.g., Pandas for data ingestion, Tensorboard for visualization); (2) target different hardware (e.g., CPU, GPU) and software (e.g., browser) backends; and (3) end-to-end accelerate queries containing both relational and ML operators. TQP is generic enough to support the TPC-H benchmark, and it provides performance that is comparable to, and often better than, that of specialized CPU and GPU query processors.
翻译:我们演示Tensor Query 处理器( TQP ): 一个自动将关系操作器编译成 Shor 程序的查询处理器( TQP ): 一个自动将关系操作器编译成 Shor 程序的查询处理器( TQP ) 。 通过利用像 PyTorrch 这样的高运行时间, TQP 能够:(1) 与 ML 工具整合( 例如, 数据摄入的Pandas 、 可视化的Tensorboard ) ; (2) 针对不同的硬件( 如 CPU 、 GPU ) 和软件( 如浏览器) 后端; (3) 包含关系操作器和 ML 操作器的端对端加速查询。 TQP 具有通用性,足以支持 TPC-H 基准, 它提供的性能与专门的 CPU 和 GPU 查询器相似, 的性能往往比专门的 更好。