We present SAINE, an Scientific Annotation and Inference ENgine based on a set of standard open-source software, such as Label Studio and MLflow. We show that our annotation engine can benefit the further development of a more accurate classification. Based on our previous work on hierarchical discipline classifications, we demonstrate its application using SAINE in understanding the space for scholarly publications. The user study of our annotation results shows that user input collected with the help of our system can help us better understand the classification process. We believe that our work will help to foster greater transparency and better understand scientific research. Our annotation and inference engine can further support the downstream meta-science projects. We welcome collaboration and feedback from the scientific community on these projects. The demonstration video can be accessed from https://youtu.be/yToO-G9YQK4. A live demo website is available at https://app.heartex.com/user/signup/?token=e2435a2f97449fa1 upon free registration.
翻译:我们根据一套标准的开放源码软件,如Label Stududio和MLflow,介绍了SANE, 科学说明和推断ENGine。我们展示了我们的注解引擎能够有利于进一步发展更准确的分类。根据我们以前关于等级纪律分类的工作,我们展示了它的应用,利用SAINE了解学术出版物的空间。用户对我们注解结果的研究显示,在系统的帮助下收集的用户投入有助于我们更好地了解分类过程。我们认为,我们的工作将有助于提高透明度和更好地了解科学研究。我们的注解和推断引擎可以进一步支持下游的元科学项目。我们欢迎科学界就这些项目进行合作和反馈。演示视频可从https://youtu.be/yToO-G9YQK4.上查阅。在自由登记时,可在https://app.heartex.com/user/ignup/?token=e2435a2f9749fa1上查阅。</s>