Mutations sometimes increase contagiousness for evolving pathogens. During an epidemic, scientists use viral genome data to infer a shared evolutionary history and connect this history to geographic spread. We propose a model that directly relates a pathogen's evolution to its spatial contagion dynamics -- effectively combining the two epidemiological paradigms of phylogenetic inference and self-exciting process modeling -- and apply this \emph{phylogenetic Hawkes process} to a Bayesian analysis of 23,422 viral cases from the 2014-2016 Ebola outbreak in West Africa. The proposed model is able to detect individual viruses with significantly elevated rates of spatiotemporal propagation for a subset of 1,610 samples that provide genome data. Finally, to facilitate model application in big data settings, we develop massively parallel implementations for the gradient and Hessian of the log-likelihood and apply our high performance computing framework within an adaptively preconditioned Hamiltonian Monte Carlo routine.
翻译:突变有时会增加进化病原体的传染性。在一次流行病期间,科学家利用病毒基因组数据推断出共同的进化历史,并将这一历史与地理分布联系起来。我们提出了一个模型,将病原体的进化与其空间传染动态直接联系起来 -- -- 有效地结合两种血原遗传引力和自我激发过程模型的流行病学范式 -- -- 并将这一模型应用于对西非2014-2016年埃博拉爆发23,422个病毒病例的巴伊西亚分析。拟议模型能够检测出提供基因组数据的1,610个样本中具有显著上升的神经时空传播率的个别病毒。最后,为了便利在大数据环境中的模型应用,我们为轨迹相似的梯度和赫斯人开发了大规模平行的实施方法,并在一个适应性先决条件的汉密尔顿·蒙特卡洛常规中应用我们的高性能计算框架。