We introduce a class of systems of Hamilton-Jacobi equations that characterize critical points of functionals associated to centroidal tessellations of domains, i.e. tessellations where generators and centroids coincide, such as centroidal Voronoi tessellations and centroidal power diagrams. An appropriate version of the Lloyd algorithm, combined with a Fast Marching method on unstructured grids for the Hamilton-Jacobi equation, allows computing the solution of the system. We propose various numerical examples to illustrate the features of the technique.
翻译:我们引入了一类汉密尔顿-雅科比方程式,这些方程式具有与域中环状熔融有关的功能临界点的特点,即发电机和环状体相交的星系,如环状浮转变贝和环状电动图。劳埃德算法的适当版本,加上汉密尔顿-雅科比方程式非结构化电网的快速进场方法,可以计算系统的解决方案。我们提出了各种数字例子来说明该技术的特征。