Most empirical studies of complex networks do not return direct, error-free measurements of network structure. Instead, they typically rely on indirect measurements that are often error-prone and unreliable. A fundamental problem in empirical network science is how to make the best possible estimates of network structure given such unreliable data. In this paper we describe a fully Bayesian method for reconstructing networks from observational data in any format, even when the data contain substantial measurement error and when the nature and magnitude of that error is unknown. The method is introduced through pedagogical case studies using real-world example networks, and specifically tailored to allow straightforward, computationally efficient implementation with a minimum of technical input. Computer code implementing the method is publicly available.
翻译:对复杂网络的大多数经验性研究并不返回对网络结构的直接、无误测量,相反,这些研究通常依靠间接测量,而间接测量往往容易出错和不可靠。经验性网络科学的一个基本问题是,鉴于这种不可靠的数据,如何对网络结构作出尽可能最佳的估计。在本文件中,我们描述了一种完全用任何格式从观测数据中重建网络的巴伊西亚方法,即使数据含有重大的测量错误,而且这一错误的性质和程度未知。这种方法是通过教育案例研究,利用真实世界的范例网络引入的,并专门专门设计,以允许以最起码的技术投入直接、计算有效的实施。执行这一方法的计算机代码是公开的。