Obtaining accurate ground and low-lying excited states of electronic systems is crucial in a multitude of important applications. One ab initio method for solving the Schr\"odinger equation that scales favorably for large systems is variational quantum Monte Carlo (QMC). The recently introduced deep QMC approach uses ansatzes represented by deep neural networks and generates nearly exact ground-state solutions for molecules containing up to a few dozen electrons, with the potential to scale to much larger systems where other highly accurate methods are not feasible. In this paper, we extend one such ansatz (PauliNet) to compute electronic excited states. We demonstrate our method on various small atoms and molecules and consistently achieve high accuracy for low-lying states. To highlight the method's potential, we compute the first excited state of the much larger benzene molecule, as well as the conical intersection of ethylene, with PauliNet matching results of more expensive high-level methods.
翻译:获取准确的地面和电子系统低洼的兴奋状态对于许多重要应用来说至关重要。 解决Schr\'odinger等式的初始方法之一,对于大型系统来说是优于比例的变量量量蒙特卡洛(QMC QMC ) 。 最近引入的深QMC 方法使用深神经网络代表的肛门,为含有多达数十种电子的分子生成了近乎精确的地面溶液,并有可能推广到其他高度精确方法不可行的大得多的系统。 在本文中,我们扩展了一个这样的 ansatz (PauliNet) 来计算电子兴奋状态。 我们在各种小原子和分子上展示了我们的方法,并始终在低洼国家实现高精度。 为了突出该方法的潜力,我们理解了大得多的苯分子的第一种兴奋状态,以及乙烷的锥形交汇点,而更昂贵的高水平方法的PauliNet(PauliNet)的匹配结果。